Weakly-Supervised Semantic Segmentation Using Motion Cues
نویسندگان
چکیده
Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such as the size of an object, to obtain reasonable performance. To address this issue, we present motion-CNN (M-CNN), a novel FCNN framework which incorporates motion cues and is learned from video-level weak annotations. Our learning scheme to train the network uses motion segments as soft constraints, thereby handling noisy motion information. When trained on weakly-annotated videos, our method outperforms the state-of-the-art approach [28] on the PASCAL VOC 2012 image segmentation benchmark. We also demonstrate that the performance of M-CNN learned with 150 weak video annotations is on par with state-of-the-art weakly-supervised methods trained with thousands of images. Finally, M-CNN substantially outperforms recent approaches in a related task of video co-localization on the YouTube-Objects dataset. This is an extended version of our ECCV paper [39].
منابع مشابه
Superpixel clustering with deep features for unsupervised road segmentation
Vision-based autonomous driving requires classifying each pixel as corresponding to road or not, which can be addressed using semantic segmentation. Semantic segmentation works well when used with a fully supervised model, but in practice, the required work of creating pixel-wise annotations is very expensive. Although weakly supervised segmentation addresses this issue, most methods are not de...
متن کاملDiscovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation
We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the classagnostic salient regions, obtained using a salient object ...
متن کاملWeakly Supervised Semantic Segmentation Using Superpixel Pooling Network
We propose a weakly supervised semantic segmentation algorithm based on deep neural networks, which relies on imagelevel class labels only. The proposed algorithm alternates between generating segmentation annotations and learning a semantic segmentation network using the generated annotations. A key determinant of success in this framework is the capability to construct reliable initial annota...
متن کاملSparse Reconstruction for Weakly Supervised Semantic Segmentation
We propose a novel approach to semantic segmentation using weakly supervised labels. In traditional fully supervised methods, superpixel labels are available for training; however, it is not easy to obtain enough labeled superpixels to learn a satisfying model for semantic segmentation. By contrast, only image-level labels are necessary in weakly supervised methods, which makes them more practi...
متن کاملAmortized Inference and Learning in Latent Conditional Random Fields for Weakly-Supervised Semantic Image Segmentation
Conditional random fields (CRFs) are commonly employed as a post-processing tool for image segmentation tasks. The unary potentials of the CRF are often learnt independently by a classifier, thereby decoupling the inference in CRF from the training of classifier. Such a scheme works effectively, when pixel-level labelling is available for all the images. However, in absence of pixel-level label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016